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(57) ABSTRACT

The disclosure provides an approach for estimating a state-
space controller from a set of video frames depicting a motion
of'an entity. The approach includes incrementally optimizing
parameters of the state-space controller and changing a struc-
ture of the state-space controller based on expanding subsets
of the set of video frames. In one embodiment, a controller-
estimation application greedily selects, at every stage of the
incremental optimization, structure and parameters of the
controller which minimize an objective function. In another
embodiment, the controller-estimation application re-opti-
mizes, after the incremental optimization, all parameters of
the state-space controller based on all of the video frames. In
yet a further embodiment, the controller-estimation applica-
tion alters the structure of the state-space controller for
robustness and compactness by adding cycles in the state-
space controller and enforcing constraints on the structure of
the state-space controller and adding and modifying state
transition types, as appropriate.

20 Claims, 4 Drawing Sheets

/ 300

START

‘ RECEIVE A SET OF VIDEQ FRAMES

fvsm

t

PERFORM PREPROCESSING TO EXTRACT IMAGE
FEATURES FROM EACH VIDEO FRAME

},\, 320

l

BEGINNING WITH GENERIC CONTROLLER
STRUCTURE, INCREMENTALLY OPTIMIZE
PARAMETERS OF CONTROLLER AND CHANGE
IT'S STRUCTURE TO FIT MOTION IN SUBSETS
OF THE VIDEQ FRAMES

t~ 330

L

(OPTIONALLY) RE-OPTIMIZE ALL PARAMETERS
OF THE STRUCTURE TAKING INTO ACCOUNT ALL
FRAMES AT ONCE

{~ 340

t

{OPTIONALLY) REFINE THE STRUCTURE FOR
ROBUSTNESS AND COMPACTNESS

}m/ 350




US 9,322,653 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Brubaker, M. A., et al.: “Physics-based person tracking using simpli-
fied lower body dynamics”, CVPR, 2007.

Brubaker, M. A., and Fleet, D. J.: “The Kneed Walker for human pose
tracking”, In CVPR, 2008.

Vondrak, M., et al.: “Physical simulation for probabilistic motion
tracking”, CVPR, 2008.

Wei, X., and Chai, J.: “Videomocap: Modeling physically realistic
human motion from monocular video sequences”, ACM Transac-
tions on Graphics 29, 4, 2010.

Witkin, A., and Kass, M.: “Spacetime constraints”, ACM SIG-
GRAPH, 159-168, 1998.

Liu, C. K, et al.: “Learning physics-based motion style with nonlin-
ear inverse optimization”, ACM Transactions on Graphics 24 (Jul.),
2005.

Silva, M. D, et al.: “Interactive simulation of stylized human loco-
motion”, ACM Transactions on Graphics 27, 3, 2008.

Muico, U., et al.: “Contact-aware nonlinear control of dynamic char-
acters”, ACM Transactions on Graphics 28, 3, 2009.

Hodgins, J. K., et al.: “Animating human athletics”, In ACM SIG-
GRAPH, 71-78, 1995.

Yin, K. Loken, K. and Van De Panne, M.: “Simbicon: Simple biped
locomotion control”, In ACM SIGGRAPH, 2007.

Chu, D., et al.: “A dynamic controller toolkit”, In ACM Siggraph
Video Game Symposium (Sandbox), 21-26, 2007.

Coros, S., et al.: “Robust task-based control policies for physics-
based characters”, In ACM SIGGRAPH Asia, 2009.

Wang, J., et al.: “Optimizing walking controllers”, In ACM SIG-
GRAPH Asia, 2009.

Wang, J., et al.: “Optimizing walking controllers for uncertain inputs
and environments”, In ACM SIGGRAPH, 2010.

Yin, K., etal.: “Continuation methods for adapting simulated skills”,
ACM SIGGRAPH, 2008.

Cline, M.: “Rigid Body Simulation with Contact and Constraints”,
Master’s thesis, The University of British Columbia, 2002.
Dempster, W. T.: “Space requirements of the seated operator: Geo-
metrical, kinematic, and mechanical aspects of the body with special
reference to the limbs”, Tech. rep., Wright-Patterson, Air Force Base
55-159, 1955.

Elgammal, A., et al.: “Non-parametric model for background sub-
traction”, In European Conference on Computer Vision (ECCV),
2000.

Brubaker, M.A., et al.: “Physics-Based Person Tracking Using the
Anthropomorphic Walker” International Journal of Computer
Vision, 2009.

Hansen, N.: “The cma evolution strategy: A comparing review”,
Towards a New Evolutionary Computation. Advances on Estimation
of Distribution Algorithms, 75-102, 2006.

Lee, Y., et al.: “Data-driven biped control”, ACM Transactions on
Graphics, 2010.

Schaal, S., and Schweighofer, N.: “Computational motor control in
humans and robots”, Cur. Opinion in Neurobiology, 6, 2005.

Sigal, L., et al.: Int. Journal of Computer Vision 87, 1-2,4-27, 2010.

* cited by examiner



U.S. Patent

Apr. 26,2016 Sheet 1 of 4 US 9,322,653 B2
105 101 102 103
108
. /
N
100 A

125 121 122 123
o o
128 |... .
N y
NG
120
135 131 132 133
138 |s-- .
N y
h'd
130 D

FIG 1



U.S. Patent Apr. 26,2016 Sheet 2 of 4 US 9,322,653 B2

231

I /

B
AORY

FIG. 2

231

/

(IFO-0-0--@-© )"
C

210

2
.
(&)
213 214
A
-4///——212

-
I
I
I
I
L



U.S. Patent Apr. 26,2016 Sheet 3 of 4 US 9,322,653 B2

(_ START )

Y
RECEIVE A SET OF VIDEO FRAMES ~ 310

¢

PERFORM PREPROCESSING TO EXTRACT IMAGE | _ 39
FEATURES FROM EACH VIDEO FRAME

|

BEGINNING WITH GENERIC CONTROLLER

STRUCTURE, INCREMENTALLY OPTIMIZE

PARAMETERS OF CONTROLLER AND CHANGE |~ 330

IT'S STRUCTURE TO FIT MOTION IN SUBSETS
OF THE VIDEO FRAMES

¢

(OPTIONALLY) RE-OPTIMIZE ALL PARAMETERS
OF THE STRUCTURE TAKING INTO ACCOUNT ALL (~ 340
FRAMES AT ONCE

|

(OPTIONALLY) REFINE THE STRUCTURE FOR | 354
ROBUSTNESS AND COMPACTNESS

END

FIG. 3



U.S. Patent Apr. 26,2016 Sheet 4 of 4 US 9,322,653 B2

400
r 450 /

| /0 DEVICES
A

/ 410 I /» 440 /» 430

|/ O DEVICES NETWORK
CPU INTERFACE INTERFACE
A A A
Y Y |
INTERCONNECT (BUS) 415

A

" I 460 " s 420

MEMORY STORAGE

OPERATING VIDEO
SYSTEM 461 FRAMES 421

PRE-PROCESSING 465
APPLICATION —

CONTROLLER-
ESTIMATION 463
APPLICATION —

SIMULATION
APPLICATION 464

FIG. 4



US 9,322,653 B2

1
VIDEO-BASED MOTION CAPTURE AND
ADAPTATION

BACKGROUND

1. Field

Embodiments presented herein provide techniques for
video-based motion capture and adaptation. More specifi-
cally, embodiments presented herein disclose techniques for
estimating control mechanisms and parameters for a physics-
based model from recorded video.

2. Description of the Related Art

A variety of motion capture techniques (e.g., via optical
marker-based systems) have been developed to create natu-
ral-looking virtual characters. Typically, motion capture
requires a carefully instrumented and calibrated laboratory
environments, as well as instrumentation of an actor being
captured. Alternatively, motion capture may be based on
video. However, motion captured from video must often be
modified in non-trivial ways to make it physically correct and
a good match to a dynamic virtual model of a character in 3D.
This occurs because recorded video only presents 2D infor-
mation, i.e., recorded video lacks depth. Some current video-
based motion capture systems rely on statistical models that
create unrealistic visual artifacts, including footskate and out-
of-plane rotations that violate gravity and balance. Other
video-based motion capture systems require human interven-
tion. No current video-based motion capture system allows
captured motions to be realistically adapted to different 3D
environments.

SUMMARY

One embodiment of the invention includes a computer
implemented method for estimating a state-space controller
from a set of video frames depicting a motion of an entity. The
method includes receiving the set of video frames and initial-
izing the state-space controller, which includes states corre-
sponding to an atomic controller and transitions between the
states. The method further includes incrementally optimizing
parameters of the state-space controller and changing the
structure of the state-space controller to approximate through
simulation the motion as depicted in an initial subset of the
video frames and in expanded subsets of the video frames. At
each stage of the incremental optimization, parameters of the
last one or more states of the state-space controller may be
optimized.

Other embodiments include a computer-readable medium
that includes instructions that enable a processing unit to
implement one or more aspects of the disclosed methods as
well as a system configured to implement one or more aspects
of the disclosed methods.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited aspects are
attained and can be understood in detail, a more particular
description of aspects of the invention, briefly summarized
above, may be had by reference to the appended drawings.

It is to be noted, however, that the appended drawings
illustrate only typical aspects of this invention and are there-
fore not to be considered limiting of its scope, for the inven-
tion may admit to other equally effective aspects.

FIG. 1 illustrates an approach for video-based motion cap-
ture, according to an embodiment of the invention.
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FIG. 2 illustrates incremental optimization of a state-space
controller, re-optimization of the controller, and refinement
of'the structure of the controller, according to an embodiment
of the invention.

FIG. 3 illustrates a method for estimating a state-space
controller from monocular video, according to an embodi-
ment of the invention.

FIG. 4 depicts a block diagram of a system in which an
embodiment may be implemented.

DETAILED DESCRIPTION

Embodiments disclosed herein provide techniques for esti-
mating a state-space controller from a set of video frames
depicting a motion of an entity. The techniques include incre-
mentally optimizing parameters of the state-space controller
and changing a structure of the state-space controller based
on expanding subsets of the set of video frames. In one
embodiment, a controller-estimation application greedily
selects, at every stage of the incremental optimization, struc-
ture and parameters of the controller which minimize an
objective function. In another embodiment, the controller-
estimation application re-optimizes, after the incremental
optimization, all parameters of the state-space controller
based on all of the video frames. In yet a further embodiment,
the controller-estimation application alters the structure of
the state-space controller by adding cycles in the structure,
adding and/or modifying state transition types where appro-
priate, and/or enforcing other constraints on the structure.
Doing so may improve the robustness and compactness of the
resulting controller. Using the estimated state-space control-
ler, a virtual character or physical robot may simulate the
motion in an environment which differs from that depicted in
the video frames.

The following description references aspects of the disclo-
sure. However, it should be understood that the disclosure is
not limited to specific described aspects. Instead, any combi-
nation of the following features and elements, whether related
to different aspects or not, is contemplated to implement and
practice the disclosure. Furthermore, although aspects of the
disclosure may achieve advantages over other possible solu-
tions and over the prior art, whether or not a particular advan-
tage is achieved by a given aspect is not limiting of the
disclosure. Thus, the following aspects, features, and advan-
tages are merely illustrative and are not considered elements
or limitations of the appended claims except where explicitly
recited in a claim(s). Likewise, reference to “the disclosure”
shall not be construed as a generalization of any inventive
subject matter disclosed herein and shall not be considered to
be an element or limitation of the appended claims except
where explicitly recited in a claim(s).

Aspects of the present disclosure may be embodied as a
system, method or computer program product. Accordingly,
aspects of the present disclosure may take the form of an
entirely hardware aspect, an entirely software aspect (includ-
ing firmware, resident software, micro-code, etc.) or an aspect
combining software and hardware aspects that may all gen-
erally be referred to herein as a “circuit,” “module” or “sys-
tem.” Furthermore, aspects of the present disclosure may take
the form of a computer program product embodied in one or
more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
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netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus or device.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality and operation of possible
implementations of systems, methods and computer program
products according to various aspects of the present disclo-
sure. In this regard, each block in the flowchart or block
diagrams may represent a module, segment or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). In some
alternative implementations the functions noted in the block
may occur out of the order noted in the figures. For example,
two blocks shown in succession may, in fact, be executed
substantially concurrently, or the blocks may sometimes be
executed in the reverse order, depending upon the function-
ality involved. Each block of the block diagrams and flow-
chart illustrations, and combinations of blocks in the block
diagrams and flowchart illustrations can be implemented by
special-purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

FIG. 1 illustrates an approach for video-based motion cap-
ture through biped control, according to one embodiment. As
shown in panel A, a video sequence 100 beginning with video
frame 101 and ending with video frame 103 depicts a jumping
motion. [llustratively, the jumping motion is performed by a
person 105 in an environment having a flat surface 108.

Panel B shows the result of pre-processing of the video
sequence 100. Illustratively, binary foreground silhouettes
115 are extracted. For example, a standard background-sub-
traction algorithm may be used to perform the extraction,
with the background model including mean color image and
intensity gradient, along with a single 5D covariance matrix
estimated over each frame. Of course, other background sub-
traction algorithms may also be used, including those that
adapt to changes in illumination.

As shown in panel C, a state-space controller is estimated
for simulating the motion in the video sequence. As used
herein, “state-space controller” includes a set of target states
of'a character; transitions among the states, if any, which may
be triggered on time, contact, or other events. The “state-
space controller” may also include various parameters which
indicate, e.g., how fast the states are approached and how
actively the character attempts to balance itself while reach-
ing the states. The “structure” of the controller includes the
number of states (e.g., 4 states) and the types of transitions
between them. In general, the structure may indicate at a
coarse level the nature of the motion. “Parameters™ of the
controller include the actual states, the speed at which the
states are reached, how actively the character balances, and
the like. In general, the parameters may describe finer aspects
of the motion given a controller structure.

The human body, its actuation, and interactions with the
environment may be modeled as follows. The 3D kinematic
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4

pose of an articulated human skeleton (also referred to herein
as the “body”) at time t may be represented by a state vector
x=p, q,, where (p,) is the root position and root vector
a4, 9,1 is an encoding of the angular configuration of the
body that combines joint angles q,* and the root orientation
q,”- The time derivative X, of the kinematic pose characterizes
the speed with which the body moves and together with the
kinematic pose x, defines a dynamic pose [x,.X,]. A mapping
of the dynamic pose [x,.%,] of the human skeleton at time t to
the dynamic pose [X,,,,X,,,] at a later time t+1 produces the
motion of the body and may be determined using articulated
rigid-body dynamics and integration. Such a mapping may be
expressed as follows:

M

Here, the function f may be a numerical approximation of a
continuous integration of internal joint torques T, with respect
to the current dynamic pose [X,.X,].

Using the foregoing model, a state-space controller may be
estimated for actuation of the body. In one embodiment, the
controller may break down control into a sequence of simple
atomic actions, transitions between which occur on events
such as time or contact. For each action, a constraint-based
action controller may be estimated for driving the simulated
character towards a predefined pose associated with the
action. However, other forms of control for actions are pos-
sible, e.g., proportional-derivative (PD) and proportional-in-
tegral-derivative (PID) servo controllers. More formally, joint
torques T, of equation (1) are produced by the controller:

(B Y i (B2 A RN

AR IAIVAS) @

where S, ,is the structure of the controller, M is the number of
states in the control structure, and © is a vector of control
parameters. A controller structure S,, induces a family of
controllers in which the parameters © define the behavior of
the controller. Here, simulation of the motion includes itera-
tively applying equations (1) and (2), resulting in a sequence
of kinematic poses X,.,~ Because this formulation is recur-
sive, an initial kinematic pose X, and velocities X, may be used
to bootstrap integration.

The state-space controller may be estimated via optimiza-
tion to determine the controller structure S*,, parameters
©%*, initial pose x*,, and initial velocities x*, that minimize
the inconsistency of poses produced by dynamic simulation
(integration) with image observations (or reference motion
capture). In one embodiment, a controller-estimation appli-
cation optimizes an energy function E(z,.,):

3

Here, the energy function E(z,.,) may measure the incon-
sistency of the simulation produced by the controller with
image-based (or reference motion capture) observations z,.,
and further measures the quality of the controller itself in
terms of robustness and stability. In one embodiment, opti-
mizing controller structure and parameters may include itera-
tive optimization of the structure with batch optimization
over controller parameters as a sub-routine, as discussed in
greater detail below. In another embodiment, the controller-
estimation application may refine the structure of the control-
ler by, e.g., applying structural transformations and re-opti-
mizing the parameters.

In one embodiment, the estimated controller may be used
to simulate the motion of the human 105 depicted in the video
sequence 100. As discussed, such a simulation may include
iteratively applying equations (1) and (2), resulting in a
sequence of kinematic poses X,.,. In general, a virtual char-
acter 125 or physical robot may be made to replay the motion

[S*10 % x* o %% ]=arg minsM,e;coyiaE (z1.7)
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in environments that differ from (or do not differ from) that of
the video sequence 100. Illustratively, Panel D depicts a vir-
tual environment 138 in which the surface is uneven and the
friction coefficient of the surface has been adjusted to simu-
late a snowy surface. As shown, the virtual character 125 has
also been attached to skiing equipment. When the motion is
simulated under such circumstances, the virtual character 125
may perform a ski jump.

FIG. 2 illustrates incremental optimization of a state-space
controller, re-optimization of the controller, and refinement
of'the structure of the controller, according to an embodiment.
As shown in panel A, a first subset 212 of a set of pre-
processed video frames 210 is analyzed.

In one embodiment, the human body may be encoded using
18 rigid body segments, with upper and lower segments for
arms and legs, hands, two-segment feet, three segment torso,
and a head. In such a case, the center of mass and inertial
properties of such segments may be derived, e.g., based on
known weight and rough proportions of the subject in the
video sequence, as well as biomechanical averages. Each
segment may be parameterized by position and orientation in
3D space and have associated collision geometry/rigid body
made up of geometric primitives (e.g., spheres, capsules, and
boxes). Various physical and environmental restrictions may
be imposed on the body and encoded using constraints which
include, but are not limited to, (1) joint constraints that ensure
segments stay attached at the joints and only have certain
degrees of freedom (e.g., knees and elbows are 1 degree-of-
freedom hinge joints), (2) joint limit constraints that ensure
that unconstrained degrees of freedom are only allowed to
actuate within allowable ranges (e.g., ranges that prevent
hyperextension at knee and elbow joints); and (3) body seg-
ment non-penetration constraints and environmental con-
straints (e.g., modeling contact and friction). Given the fore-
going simulator-level constraints, the state x~[p,,q,Je R *,
which includes joint angles and a root position and orienta-
tion, is the relevant state for purposes of actuation and control,
even though the simulation state of the character is e R *°%.
Note, x, spans the null space of the joint constraints. Depend-
ing on the choices made for the various joints of the body
(e.g., hinge, ball-and-socket, etc.), the dimensionality of x,
may be different.

The joint constraints may be combined in a system of
equations, which can be expressed as a mixed linear comple-
mentarity problem (Mixed LCP). Well-known Mixed LCP
solvers may be used to solve such problems, yielding a set of
forces and torques required to satisfy the constraints. Note,
the degrees of freedom corresponding to the joint angles must
be actuated to produce voluntary motions for the body.

For actuation, a controller may be formulated using con-
straints and the constraints may be directly integrated with the
body and simulator-level constraints discussed above. In one
embodiment, the Mixed LCP problem may be solved taking
the actuation torques into account to ensure that constraint
forces anticipate the impact of actuation on the system. In
another embodiment, a PD or PID controller may be used
instead for actuation.

In one embodiment, the controller may be a state space
controller as discussed above. In such a case, a motion may be
expressed as a progression of simple control tasks (actions).
That is, the controller may include two distinct entities: (1)
atomic control actions, and (2) transitions between the actions
that are triggered on timing or events. Each atomic control
action may consist of joints applying torques, computed via
e.g., proportional-derivative control, that drive the joints to
the desired local angles of a target pose represented by a
desired set of joint angles. Note, the target pose may not be
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achieved precisely. For example, one control action for a
walking motion may include a target pose associated with a
state in which a swing leg of the body is extended beyond
physical limits. By driving the joints to achieve the target
pose, the swing leg may be extended down and backwards,
thereby causing the swing leg to come into contact with the
ground. The contact event may further cause a transition to
the next atomic control action of the walking motion (e.g., one
in which the other leg becomes the swing leg and where
driving the joints to achieve the target pose causes the leg to
lift and swing forward).

Formally, state-space controllers may be expressed as
finite state machines with states corresponding to atomic
control actions. As discussed, such a controller may include a
set of M states and transitions between the states that are time
or event driven. Advantageously, the controller allows a con-
cise representation of motion dynamics through a sparse set
of target poses and parameters. The use of the sparse repre-
sentation allows more robust inference that is less biased by
noise in individual video frames. Despite the sparse nature of
the representation, the controller still allows sufficient expres-
siveness to model variations in style and speed that may be
observed in the video sequence.

A state-space controller may be defined by its structure and
parameters. Let the structure of the controller be denoted by
S,z the actions of the controller by ©,, and the transitions
between the actions by x,, i€[1, M] (e.g., k,=0 being a transi-
tion based on time, k,=1 being a transition based on left foot
contact, K,=2 being a transition based on right foot contact,
etc.). Transitions on time may occur once the simulation time
spent in state i is =v,. By contrast, transitions on contact events
may occur when the simulator detects that the contact event
has happened. For example, the structure of a controller for a
walking cycle having four states may look like:

K =1 K =0 K3=2

5i={B - 0,0, 50,5 0,)

Further, let the parameters of the controller be expressed as
©={(51, 01, 01, (535 05, 05) -« -5 (Sapp Oas Taghs Viy Vo o - -
where s, is the representation of the target pose for the angular
configuration ofthe body that the controller tries to achieve in
state ©;; 0, and o, are parameters of the corresponding control
and balance laws, respectively, used to achieve the pose; and
v, are transition timings for those states where transitions
happen on time (i.e., K,=0).

As discussed, the controller may include atomic control-
lers which produce torques necessary to drive the pose of the
character towards target poses s, of each of the states ©,. The
values of control parameters 8,, which encode, e.g., the speed
atwhich target poses should be reached, may be used to set up
control laws. In one embodiment, the atomic controllers may
be formulated based on constraints. In particular, assuming
the body is currently in pose x, and that the controller is
executing an atomic control due to state ©,, the atomic con-
troller may be formulated using constraint stabilization,
where the stabilization mechanism tries to reduce the differ-
ence between the target pose and the current pose using
constraints on the angular velocity of the root degrees of
freedom (DOFs) r and non-root DOFs k:

{4/=—a/(q/-g(s} Q)

{q.tk:_aik(qtk_g(si)k)} )]

These constraints may be combined with all other constraints
to solve for the required torques in the Mixed LCP problem
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discussed above. The set of control parameters is then
8,={c,}. In one embodiment, the number of control param-
eters may be reduced by assuming left-right-parameter sym-
metry such that a’s are optimized for one side of the body and
reused for the other side.

Note, the foregoing constraint-based approach is different
from commonly-used proportional derivative (PD)-servos.
Intuitively, a PD-servo assumes that control torques are linear
functions of the differences between the current and target
poses of a body. The PD-servo further assumes that each
degree of freedom can be controlled independently and relies
on a feedback mechanism to resolve interactions within the
system. In contrast, the constraint-based approach described
herein solves for torques necessary to approach a target pose
by explicitly taking into account constraints present among
rigid body segments and the environment. In addition, param-
eters o, may modulate the pose difference to be reduced inone
simulation step where, e.g., the target pose is not to be reached
immediately. Advantageously, the more exact control and
lesser reliance on feedback permits simulation at lower fre-
quencies (e.g., 120 Hz).

In one embodiment, the controller estimation application
may limit the solutions to the Mixed LCP so that super-human
forces are not applied. In particular, the torques generated
about individual joint axes may be limited, where a joint is
defined between segments i and j having masses m, and m,,
using a single parameter

m;+m +m;

Y=y 1 qois o ym—i
2 ! 2

Intuitively, these bounds permit heavier body segments con-
taining larger muscle volumes to apply larger torques about
joints. To account for the fact that the segments i and j con-
nected at the joint may have different masses, an average

m; +m;
2

is taken, thereby providing an approximation to an answer
that would take into account moment of inertia of the con-
trolled limb.

In one embodiment, the model ensures that the net torque
on the root segment is exactly equal and opposite to the sum
of torques of all connected segments, thereby ensuring con-
sistency with Newton’s physical laws. Here, an additional
constraint of the following form is required:

{0/ + kevergner1=0}-

(6
Such a constraint may be accounted for via an approximate
two-pass inverse dynamics solution that decomposes the
torques unaccounted for at the root to the torques applied at
the thighs according to the following pseudo-code:
Application of Control Forces

1: Solve for 7, using inverse dynamics to satisfy Eq. (4) and Eq. (5) and
apply T,

2: Determine by how much Eq. (6) is violated: T, =71, + EkeNeigh(,)t,k
3: Apply —T.,,., to the swing upper leg

4: Solve for 7, using inverse dynamics to satisfy Eq. (5) and apply =,

In another embodiment, the two-pass inverse dynamics algo-
rithm may be extended to a multi-pass algorithm where
steps 1-4 in the pseudo-code above are repeated multiple
times.
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Constraints on the root segment, as discussed above, will
attempt to maintain the world orientation of the body. In one
embodiment, an active feedback mechanism may be added to
prevent falling when the environment differs from one that is
expected by the controller or there are perturbations in the
environment. In particular, the feedback mechanism may
dynamically adjust the target orientation of a swinging upper
leg based on the horizontal offset of the body’s center of mass
(COM) from the body’s center of pressure (COP), resulting in
three additional control parameters encoded into a vector o,e
R >. Here, the feedback mechanism may affect the motion of
the swinging foot so as to return the character to a balanced
pose where the COM is above the COP. In one embodiment,
the feedback may be implemented by synthesizing a new
target orientation for the swinging upper leg such that the
leg’s medial axis points along the ground plane projection of
the direction d:q.,1(COM—COP)+GZ.,2(COM—COP) and
blending between this orientation and the actual orientation
from the current state with the weight o, ;. Other forms of
active feedback are also possible.

In one embodiment, a dimensionality reduction technique
may be used to reduce the search space of poses. In such a
case, target poses for the body are represented in a low-
dimensional manifold of poses likely for the motion. Dimen-
sionality reduction techniques include Principal Component
Analysis (PCA), Kernel-PCA, Gaussian Process Latent Vari-
able Models, Gaussian Processes Dynamic Models, among
others. When a PCA prior is used to represent poses, PCA
representation s, of the target pose may be mapped to the joint
angle representation g, using a function g(s,) defined as:

gls)=Us+b. @]

The controller-estimation application may learn the linear
basis U from training motion capture data using singular
value decomposition (SVD). PCA coefficients for s, in the
parameter vector © may be stored. For example, coeffi-
cients for principal components may be stored to account
for 95% of the variance in the data.

As discussed, use of PCA representation of poses may
reduce the dimensionality of the pose search space, thereby
leading to faster and more robust convergences. In one
embodiment, a uniform prior may be added on s, such that
coefficients are within +40. Similarly, the initial kinematic
pose may be encoded in the same PCA space so that x,=Us+
b. In such a case, s, may be optimized rather than x,, directly.

In a further embodiment, PCA priors from marker-based
motion capture may be obtained to generate a family of mod-
els {U,,b,}, where i is over a set of activities (e.g., walking,
jumping, spin kicking, back handspring, cartwheel, etc.) as
well as an activity-independent model {Uy=l,,.40,b0=0.40}-
At test time, the controller-estimation application may per-
form optimization with each model, and the controller-esti-
mation application may select the resulting controller that
best fits observations according to the objective function
E(z,.7).

Based on the foregoing body model and actuation, the
controller-estimation application may perform incremental
optimization of the controller’s structure in stages. Any fea-
sible type of incremental optimization may be used, including
genetic search algorithms and sampling-based optimization
algorithms. In one embodiment, the structure ofthe controller
may be estimated locally and simultaneously along with esti-
mation of control parameters. At the first optimization stage,
a first subset of pre-processed frames 212 having T, frames
are used for optimization of the controller’s 216 parameters
©, initial pose X, and the initial velocities x,. Here, for
initialization of the optimization, the controller-estimation
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application may assume generic initial pose and velocities
213 and an initial structure with one state, S,={—0O,}.

As shown in panel B, a subsequent T, frames from the
video sequence (or reference motion capture) are added to the
initial T frames, and the controller is optimized again assum-
ing the same initial structure S;={®—0, } to produce con-
troller 217. Further, the controller-estimation application may
propose an additional state as an update to the controller’s
structure. As shown, controllers 221 and 223 include an addi-
tional state. In one embodiment, the controller-estimation
application may optimize one or more of the last states of the
controllers being analyzed at any given incremental optimi-
zation stage, thereby ensuring a fixed compute time even as
the number of states increases. [llustratively, two states are
optimized in controller 221, whereas one state is optimized in
controller 223. Similar to controller 223, optimization is per-
formed on one state of controller 222. In one embodiment,
optimization minimizes an objective function with respect to
controller parameters O, initial pose X, and initial velocities
X, given a controller structure S,,. The controller-estimation
application selects the controller associated with the lowest
(or highest in alternative embodiments) objective value out of
controllers 217 and 221-223. That is, at every stage of incre-
mental optimization, the controller-estimation application
optimizes controller parameters ®, initial pose X, and initial
velocities X, for one or more last states of proposed control-
lers. The controller-estimation application then greedily
selects the controller associated with the best objective value.

As shown in panel C, after incremental optimization, the
controller-estimation application may re-optimize all param-
eters of the controller in a batch, taking into account all frames
of'the video sequence 210. As discussed, parameters for one
or more last controller states may be optimized during each
incremental optimization stage. By contrast, re-optimization
optimizes all parameters of each state of the controller struc-
ture. In one embodiment, re-optimization may be optional, as
the compute time for optimizing all parameters based on all
video frames may be prohibitively large in some cases.

As shown in panel D, the structure chosen based on incre-
mental optimization is refined for robustness, and controller
parameter values are re-estimated via batch optimization
given proposed structural refinements. In general, proposed
structural refinements may include, but are not limited to,
adding loops or enforcing constraints (e.g., avoiding contact)
and adding or modifying transition types (e.g., modifying a
transition based on time to a transition based on contact). For
example, the motion in video sequence 210 is substantially
repeated in that two jumps are made. As a result, the control-
ler-estimation application may modify the structure 231 to
include a loop. In general, various modifications may be
proposed, and the modified structure which best fits the
observed motion or has certain desired properties (e.g., sta-
bility, compactness, etc.) may be chosen. Illustratively,
parameters for the modified structure 240 are re-estimated via
batch optimization, and if the objective value is, e.g., within
some error tolerance of the objective value for the structure
231 and also smaller (or larger, in some embodiments) than
the objective values for other proposed refinements, then the
controller-estimation application may choose the modified
structure 240 over the original structure 231.

FIG. 3 illustrates a method 300 for estimating a state-space
controller from monocular (i.e., two-dimensional) video,
according to an embodiment. As shown, the method 300
begins at step 310, where a controller-estimation application
receives a video sequence which includes a set of video
frames. At step 320, the controller-estimation application
performs pre-processing to extract image features from each
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video frame. The extracted image features may include fore-
ground, edges, color, texture, and motion capture marker
locations. In one embodiment, pre-processing extracts fore-
ground silhouettes like those depicted in Panel B of FIG. 1. In
a further embodiment, the video sequence or foreground sil-
houettes may be sub-sampled to reduce computation time.

At step 330, the controller-estimation application incre-
mentally optimizes the parameters of a controller and
changes the controller’s structure to fit the motion in increas-
ingly larger subsets of the set of video frames, beginning with
a generic controller structure. In one embodiment, the con-
troller-estimation application may greedily select controller
structure and parameters as new observations are added,
thereby avoiding a difficult high-dimensional batch optimi-
zation problem over the entire video sequence, and instead
solving easier lower-dimensional optimization problems over
an expanding motion window. Experience has shown that
optimization results over a motion window can provide a
good initialization for local optimizations over a subse-
quently expanded window. In one embodiment, the motion
window may simply begin with a first subset T, of pre-pro-
cessed video frames of the video sequence. At each later stage
of'incremental optimization, the current motion window may
be expanded by subsequent T, frames from the pre-processed
video sequence.

To obtain a controller that approximates the motion in the
video frames (or in reference motion capture), the controller-
estimation application may estimate both the structure of a
controller for the motion S,, (including number of states M
and the types of transitions k among them), parameters © of
the controller optimized to fit the observations, and initial
pose X, and velocities X,. Such an optimization may include
optimizing an objective function, such as that of equation (3),
with respect to S,,, ©, X,, and X,. In one embodiment, the
objective function may be

E(zy, D)= ME ML crart P Eoprior e Eocones (8)

where E,,;, measures inconsistency of the simulated motion
produced by the controller and image-based (or reference
motion capture) observations, B, E,,,.,,, and E,, measure
the quality of the controller itself, and the coefficients A, are
weighting factors designating the overall importance of the
various terms.

In equation (8), the energy term E,,;,, measures the incon-
sistency between the simulated motion and the image obser-
vations z, ., which may include, e.g., foreground silhouettes.
Assuming the likelihood is independent at each frame, the
simulated motion X,., may be measured for inconsistency
with the image observations by adding up contributions from
each frame. In one embodiment, the controller-estimation
application measures the inconsistency in each frame by pro-
jecting a simulated character into the image (assuming a
known camera projection matrix) and computing the differ-
ence between the projection and the pre-processed frame on a
per-pixel basis. In such a case, the controller-estimation
application may, for example, determine a symmetric dis-
tance between an estimated binary silhouette for the projec-
tion S,° and a binary foreground silhouette for the frame S,'.
This results in the following formulation for the energy term
B!

T B, ©)

P R
Bii+Ye,

Ejike = v
Rr,r + Yr,r

t=1
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where R, =% ;S ()18 ), B, ~E S, (xy)l1-
S/ eyl and Y, 2, )8, ()8, (%.).

In an alternative embodiment in which reference motion
capture data is used instead of video data, the energy term
E,;.. may be defined as a sum of squared differences between
markers attached to the observed skeleton and markers on the
simulated body. For example, where three markers are
attached to each body segment, E,,,, may be

ElikEZZFITEjZI 182#13“%,‘,};‘—%;}2“22 (10)

where m, ;e R ? is the location of the k-th observed marker
attached to the j-th segment at time t (computed from the
reference motion capture pose via forward kinematics) and
m, ,*eR? is the location of the k-th marker attached to the
j-th segment at time t of the simulated character obtained by
simulating the controller with parameters ©.

In equation (8), the energy term E_,,, measures the incon-
sistency between the simulation for time AT past time T,
where T is the time of the last observation, and the last
observation. Here, the controller-estimation application
assumes that the person depicted in the video sequence
should end up in a stable (as opposed to an unstable) posture
at the end of the simulation, and the energy term E_,, is used
to ensure such a stable posture. In one embodiment, E, ,, may
be defined as

T+AT

Estap = Z

t=T+1

BT,r RT,r (1 1)

_—
BT,r + YT,r RT,r + YT,r

In equation (5) energy term B, ,,. is used to bias solutions
towards more likely possibilities based on a prior over the
state-space control parameters. In one embodiment, the con-
troller-estimation application optimizes four types of param-
eters: representation of target poses for atomic controllers s,,
parameters of atomic controllers a;, transition times v,, and
balance feedback parameters o;; in addition, the controller-
estimation application may also optimize initial pose x, and
velocities X,,. For a,, v,, and o,, uninformative uniform priors
may be used over ranges of possible values, such as: a,~U(-
0.001,0.2), v,~U(-0.1,0.5), o, ,~U(-1,1, o, ,~U(-1,1), and
0~U(0,1). Uniform priors may also be imposed on s,, s,~U(-
40,40). In one embodiment, uniform priors over parameters
may be encoded using a linear penalty on values of param-
eters that are outside the valid ranges. In particular, for every
variable v, above, having a uniform prior v~U(a,b), the fol-
lowing term may be added to the prior: E,,,,,(®):Imax (0,v-
b)l+Imin (0,v-a)l.

In equation (8), the energy term E_,,, imposes a contact
state change penalty. Here, a contact state change may include
one or more body segments changing their contact state(s)
with respect to the environment (i.e., the environment ceases
to apply forces, or vice versa). Experience has shown that
controllers optimized without using the energy term E_ .
may make frequent contact changes between body
segment(s) and environment, especially for low-clearance
motions like walking. For example, a walking controller may
stumble slightly if that helps to produce a simulated motion
that is more similar to the motion depicted in the pre-pro-
cessed video or reference motion capture. However, such
behavior hinders the ability of the controller to be robust to
perturbations in the environment. One embodiment addresses
this issue by requiring that there be no more than one (i.e.,
zero or one) state change between two consecutive atomic
actions. Such an approach is motivated by the observation
that contact state change creates discontinuity in the dynam-
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ics and hence should be accompanied by a state transition;
however, state transition may happen for other reasons (e.g.,
performance style). In one embodiment, the energy term E
may be defined as E_,,, =2, **c(i), where

cont

cont

(i) = 12

if 0 or 1 contact changes between ®; and O

0
{LARGE?CONST if > 1 contact changes between ®; and ©;,,

and LARGE_CONST is a large real-valued constant (e.g.,
10,000).

Given the objective function of equation (5), the controller
of interest may be obtained by optimizing the objective with
respect to S, ,, ©, X, X,. In one embodiment, the controller-
estimation application uses gradient-free Covariance Matrix
Adaptation (CMA) algorithm. CMA is an iterative genetic
optimization algorithm that maintains a Gaussian distribution
over parameter vectors. The Gaussian may be initialized with
mean [ and a diagonal spherical covariance matrix with vari-
ance along each dimension equal to o®. CMA may then
proceed by: (1) sampling a set of random samples from the
Gaussian; (2) evaluating the objective E(x,.,) for each of
those samples; and (3) producing a new Gaussian based on
the most promising samples and the mean. The number of
samples to be evaluated and used for the new mean may be
automatically chosen by CMA based on the dimensionality of
the problem.

Using CMA, the controller-estimation application may run
batch optimization of control parameters for a given state-
space controller structure. Batch optimization determines
control parameters ©=[(s, 0, 0,), (5., 05, 05), 845 O, Tup),
vy, V5 ... | and initial pose X, and velocities X, by minimizing
the value of the objective function E(z,.,). Experience has
shown that batch optimization is useful where a reasonable
guess exists for the controller structure. Further, batch opti-
mization of cyclic controllers may be particularly beneficial
because weak observations for one motion cycle can be rein-
forced by evidence from other cycles, thereby making the
optimizations less sensitive to observation noise and less
proneto overfitting to local observations. In one embodiment,
batch optimization may be implemented according to the
following pseudo-code:

[©, %o, X, E] = BatchOp (8,4 %o, Z, U, b, ©, Xo)

Input: State-space controller structure (S;,); initial pose (x¢); PCA
prior (U, b); observations (image features) (Z = {z¢, zy, . . . , 27})
Opional input: Controller parameters (®); initial velocity (Xo);
Output: Controller parameters (®); initial pose (X); initial velocity
(Xo); objective value (E)

1: Project initial pose onto PCA space: so= U™! (xo - b)
2 if %o =0, © = 0then

3: Initialize initial velocity: X, =0

4 Initialize controller parameters (©):

s;=80,0;=0.1,6,=[0,0,0], v, =025 Vi€ [1,M]
end if
Initialize variance: X = Io
Initialize mean: p = [®, sq, X
fori=1-—=N;pzrdo
for J=1 = Npopuramon 40
0: Sample controller parameters and initial pose:
(09, 567, %62 ~ N (1, %)
Reconstruct initial pose:
%P =UsP + b
fort=1—=T+ATdo
Control and simulation:

]T

= A0 00~ &y W

11:

12:
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-continued

14

-continued

[©, Xo, X0, E] = BatchOp(Sy4, X0, Z, U, b, ©, X¢)

[Sas ©, %o, Xo, E] = IncremOp(x, Z, U, b)

919 (9]
L =1 y P o b oY

() L .

o %7 o)

14: end for
15: Compute objective:
ED = MEpe + MEgap + Mo Bprior + MeEoor
16: end for
17: I, = = CMA_update(p, =, {09, so9, %9, EP})
18: end for
19: Letj* = argminJ;E(/)
20: return ©9, x,97, %Y, BV

Batch optimization over an entire pre-processed video
sequence can be a difficult problem. The number of possible
controllers for controller structure S,,is exponential in M, so
simply enumerating a population of controller structures and
estimating parameters for each of them in a batch may be
inefficient. In addition, without good initialization, optimiza-
tion of the high-dimensional parameter vector may get stuck
in local optima. Experience has shown that an incremental
optimization approach for estimating the controller structure
may alleviate these problems.

As discussed, incremental optimization may include esti-
mating controller structure locally and simultaneously with
estimation of control parameters. In one embodiment, the
controller structure and parameters are greedily selected as
new observations are added. As a result, the high-dimensional
batch-optimization problem is essentially broken down into a
number of lower-dimensional optimization problems over an
expanding motion window. Further, optimization results over
a current window may provide good initialization for local
optimization over an expanded window.

In the first stage of incremental optimization, the control-
ler-estimation application may assume that the controller
structure is a fixed initial structure having one state,
S,={®—0, }, and the controller-estimation application may
optimize the controller parameters using the first T, pre-pro-
cessed video frames using the batch optimization from above.
At each subsequent stage of incremental optimization, T,
more frames from the pre-processed video sequence are
added to the motion window, and the controller-estimation
application re-optimizes the controller parameters to fit
frames in the now longer window. This step is realized by
performing a number of local optimizations, which may
include proposing updates to the controller structure (e.g.,
addition of a state to the current chain of states). That is, at
each stage, addition of a state to the current chain of states
may be proposed and tested by re-optimizing the controller
with and without the additional state. The controller-estima-
tion application then selects a controller for use in the next
stage of incremental optimization based on the best (e.g.,
lowest) objective value after re-optimization.

In one embodiment, incremental optimization may be
implemented according to the following pseudo-code:

[Sap ©; Xg, %o, E] = IncremOp(x¢, Z, U, b)

Input: Initial pose (Xq); PCA prior (U, b); observations/image features
Z={z02.....27})

Output: State-space controller structure (S;,); Controller parameters (©);
initial pose (X,); initial velocity (%X.); objective value (E)

1: Number of observations to add per stage:

T

5 =
Nsraces

w
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2: Initialize controller structure:
M=1 S;={®d—=0}
3: Optimize parameters:
[©, Xo, %o, E] = BatchOp(S;4 X0, Z1.5 U, b)
4: fori=2 — Ngyyazs do
5: Re-optimize parameters:
[©, %o, %o, E] = BatchOp(Syy, %0, 1.7, U, b, ©, %)
6: Try to add a state:
Sar" = {Sp =0 Oy, i}
[0, %", %¢", E] = BatchOp(S,", %o, Z1.7,, U, b, ©, %o)
7: if E* < E then
8: Sire1 =St M=M+1
9: [0, X¢, %o, E] = [0, X5, %", E*]
10: end if
11: end if

In one embodiment, one or more of the last states of con-
trollers may be optimized at any given stage, thereby ensuring
a fixed compute time even as the number of states increases.
In a further embodiment, multiple BatchOps may be executed
at the same time. For example, the controller-estimation
application may execute six BatchOps for every instance of
BatchOp in the foregoing IncremOp pseudo-code to optimize
the last one or two states of the controller, each with three
different seeds.

Referring again to method 300, at step 340, the controller-
estimation application re-optimizes all parameters of the con-
troller structure taking into account all frames of the set of
pre-processed video frames at once. As discussed, parameters
for one or more last frames may be optimized during each
incremental optimization stage. By contrast, re-optimization
optimizes all parameters of each state of the controller struc-
ture using all pre-processed video frames. In one embodi-
ment, re-optimization may be optional, as the compute time
for optimizing all parameters based on all frames may be
prohibitively large in some cases.

At step 350, the controller-estimation application refines
the controller structure. In some embodiments, incremental
optimization may be based on controller structures with tran-
sitions on timing, because such controllers are typically well-
behaved and easier to optimize. However, controller struc-
tures with transitions on timing may not be optimal in terms
of, e.g., stability or compactness. For example, a state transi-
tion based on time for landing after a jump may not work well
if the environment is altered so that the time of landing
changes. During controller structure refinement, the control-
ler-estimation application alters the controller structure to
make the controller more robust and re-estimates controller
parameters after each alteration. For example, the state tran-
sition based on time for landing after a jump may be modified
to a state transition based on contact, thereby permitting the
controller to adapt to environmental changes even when they
alter the time of landing. In one embodiment, refinement may
be optional, as, similar to re-optimization, refinement may be
computationally expensive.

In general, there may exist an equivalence class of control-
lers which can simulate the same motion. For example, a
one-and-a-half cycle walking controller may be represented
in at least three different ways:

(1) using a chain controller with transitions on timing:

K1 =0 K =0 x3=0 K4=0

55={® - 0,20, 20, 20,20,20,)
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(2) using a chain controller with some transitions on contact:

K2=0 K3=2 K4=0 K5=1

5={B - 0,20, 20, 0,20, 0)

or

(3) using a cyclic controller:

K2=0 K3=2

5={B - 0,20, 20,20,20,)

Assuming transitions on time in S¢ are chosen coincident with
contact events in S'; and S,, the foregoing controllers will
produce the same simulation results with the same atomic
action controllers. Note, however, S's and S, are more
robust and S, is more compact in terms of representation.
As a result, the controller-estimation application may
choose S, over S'; and S¢ during structural refinement.
As discussed, a contact energy term E_ . may help enforce

the constraint that transitions on time coincide with contact

events, if any. In such a case, experience has shown that
transitions on time often coincide within a few frames with
contact events. In one embodiment, the controller-estimation
application may take advantage of such coincidence during
structure refinement by performing a transformation S',~

T L(S,,) which transforms transitions on timing with appro-

priate transitions on contact in S, if the timing transition is

within a given time (e.g., 0.2 seconds) of a contact and if only
one contact change occurs within the time window (e.g., the

0.2 second window). Because the time event may not happen

exactly on contact, in one embodiment the controller-estima-

tion application may re-optimize controller parameters ©
using the parameters obtained from the incremental optimi-
zation as the initial guess. The controller-estimation applica-
tion may further use a transformation S', =T _(S,, that
greedily searches for cyclicity by comparing the type of tran-
sition, target pose, and control parameters to previous states.

Again, controller parameters may be re-optimized, using the

O obtained from the incremental optimization and re-optimi-

zation as the initial guess to account for minor miss-align-

ment. The controller-estimation application may choose a

transformed controller over the simple chain controller if the

resulting objective value is within acceptable tolerance 0

(e.g., 15% of the objective value of the original controller).
In one embodiment, structural refinement may be imple-

mented in addition to incremental optimization according to

the following pseudo-code:

[Sas ©, Xg, g, E] = IncremPlusRefinement(x,, Z, U, b)

Input: Initial pose (Xq); PCA prior (U, b); observations/image features (Z =
{20, 215 -, 22})
Output: State-space controller structure S, Controller parameters (©);
initial pose (%y); initial velocity (%o); objective value (E)
1: Incremental optimization:
[S1r ©, %o Xg, E] = IncremOp(xo, Z, U, b)
2: Structure transformation (for contact transitions):
Sy = T 1B
[©', %y', Xo's E'] = BatchOp(S,/, Xo, Z, U, b, ©, %p)
3:if E'<E + 8 then

4: [Sas ©, X0 %o E] = [Safs ©', X', &g’ E'
S:end if
6: Structure transformation (for cyclicity):

Sar =T (8

1)
[0'%¢, %o, E'] = BatchOp(S,/, %o, Z, U, b, ©, %o)
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16

-continued

[San ©, X0, Xg, E] = IncremPlusRefinement(x,, Z, U, b)

7:if E'<E + 0 then
&: [S15 ©, XoXo, E] =[S/, ©', X¢', %o, E]
9: end if

Although discussed above with respect to transitions on
contact and timing, alternative embodiments may include
other transitions, including, but not limited to, transitions
based on momentum or velocity changes, etc. In such cases,
the controller-estimation application may alter the controller
structure to, e.g., replace transitions based on timing with
transitions based on changes of momentum or velocity, etc. In
addition, the controller-estimation application may impose
various constraints on the controller structure (e.g., state sym-
metry for symmetric motions) and parameters and enforce
them during the structure refinement.

Although discussed above as separate steps, in one
embodiment structural refinement and incremental optimiza-
tion may be combined. That is, the controller-estimation
application may attempt to, e.g., transform timing transitions
to transitions on contact and to greedily search for cyclicity
while also performing incremental optimization.

FIG. 4 illustrates a system 400 in which aspects of the
invention may be implemented. As shown, the system 400
includes, without limitation, a central processing unit (CPU)
410, a network interface 430, an interconnect 415, a memory
460 and storage 420. The system 400 may also include an [/O
device interface 440 connecting 1/O devices 450 (e.g., key-
board, display and mouse devices) to the system 400.

The CPU 410 retrieves and executes programming instruc-
tions stored in the memory 460. Similarly, the CPU 410 stores
and retrieves application data residing in the memory 460.
The interconnect 415 facilitates transmission, such as of pro-
gramming instructions and application data, between the
CPU 410, I/O device interface 440, storage 420, network
interface 430, and memory 460. CPU 410 is included to be
representative of a single CPU, multiple CPUs, a single CPU
having multiple processing cores, and the like. And the
memory 460 is generally included to be representative of a
random access memory. The storage 420 may be a disk drive
storage device. Although shown as a single unit, the storage
420 may be a combination of fixed and removable storage
devices, such as tape drives, removable memory cards or
optical storage, network attached storage (NAS), or a storage
area-network (SAN). Further, system 400 is included to be
representative of a physical computing system as well as
virtual machine instances hosted on a set of underlying physi-
cal computing systems. Further still, although shown as a
single computing system, one of ordinary skills in the art will
recognize that the components of the system 400 shown in
FIG. 6 may be distributed across multiple computing systems
connected by a data communications network.

As shown, the memory 460 includes an operating system
461 and applications 462-464. Illustratively, the operating
system may include Microsoft’s Windows®. The applica-
tions 462-464 include a preprocessing application 462 which
extracts features from video frames 421 stored in storage 420.
In one embodiment, pre-processing may include extracting
foreground silhouettes, as discussed above with respect to
FIGS. 1 and 3. The applications 462-464 further include a
controller-estimation application 463 which determines
based on the extracted features controller structure and
parameters to simulate the motion depicted in the video
frames 421. In one embodiment, the controller-estimation
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application 463 may perform incremental optimization, re-
optimization, and controller structure refinement, as dis-
cussed above with respect to FIGS. 1-3.

The applications 462-464 further include a simulation
application 464, which in one embodiment may be configured
to simulate a dynamic and responsive character using the
controller estimated by the controller-estimation application
463. As discussed, such a simulation may be performed in an
environment which is different from that depicted in the video
frames 421. In an alternative embodiment, the simulation
application 464 may send signals to a physical robot indicat-
ing joint movements to be made in performing the motion
according to the estimated controller. That is, the simulation
application 464 may determine based on the estimated con-
troller provided by the controller-estimation application 463
instructions that are sent to the robot and cause the robot to
move according to those instructions.

Although discussed above primarily with respect to single-
view video, alternative embodiments may make use of other
input, such as multiple views or depth maps generated from
depth sensor data, which may produce improved results.
Although discussed above with respect to a fully-automated
technique, alternative embodiments may also account for
user input. For example, a user may click on joint locations in
the video frames, and such joint locations may be treated as
video frame features, similar to the silhouettes discussed
above. Further, although discussed above with respect to
video frames having human motions performed on planar
surfaces, alternative embodiments may estimate controllers
for simulating motions of other entities (e.g., animals) per-
formed in non-planar environments in the video frames. In
such a case, a skeletal model of the entity (e.g., the animal)
with limbs and mass properties may be used in lieu of the
human skeletal model discussed above, and a model of the
non-planar environment of the video frames may be used in
lieu of a planar model.

Advantageously, techniques disclosed herein simulta-
neously solve the problems of marker-less motion capture
and bipedal control from noisy data, better leveraging infor-
mation present in video of human motion and simplifying the
marker-less tracking problem. Techniques disclosed herein
are able to estimate controllers for a variety of complex and
dynamic motions, and the controllers can be used to simulate
the motion in 3D with a virtual character or a physical robot.
Further, the recovered controllers also include feedback bal-
ancing mechanisms which allow captured motions to be real-
istically adapted to different environments with novel terrain,
dynamic objects, and the like.

While the foregoing is directed to aspects of the present
invention, other and further aspects of the invention may be
devised without departing from the basic scope thereof, and
the scope thereof is determined by the claims that follow.

What is claimed is:
1. A computer-implemented method for estimating a state-
space controller from a set of video frames, comprising:
receiving the set of video frames, wherein the video frames
include two-dimensional (2D) images which depict a
motion of an entity;
initializing, via one or more processors, the state-space
controller, wherein the state-space controller includes
states each corresponding to an atomic controller and
transitions between the states; and
incrementally optimizing parameters of the state-space
controller and changing a structure of the state-space
controller to approximate through simulation the motion
as depicted in an initial subset of the video frames and in
expanded subsets of the video frames,
wherein the parameters include at least one of represen-
tations of target poses for angular configurations of'a
body and control and balance parameters,
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wherein parameters of a last one or more states of the
state-space controller are optimized at each stage of
the incremental optimization, and

wherein changing the structure of the state-space con-
troller includes adding one or more additional states
and transitions between states to the state space con-
troller.

2. The method of claim 1, further comprising, pre-process-
ing the video frames to extract one or more image features
from each video frame.

3. The method of claim 2, wherein the image features
include at least one of foreground silhouettes, edges, color,
texture, and motion capture marker locations.

4. The method of claim 1, further comprising re-optimizing
the parameters ofthe state-space controller based on all of the
video frames.

5. The method of claim 1, further comprising altering the
structure of the state-space controller for robustness and com-
pactness by at least one of adding cycles in the structure,
enforcing constraints on the structure of the state-space con-
troller, adding a state transition type, and modifying a state
transition type.

6. The method of claim 5, wherein the incremental optimi-
zation minimizes an objective function with respect to state-
space controller structure and parameters, initial pose, and
initial velocity.

7. The method of claim 1, wherein the incremental optimi-
zation is greedy.

8. The method of claim 1, wherein the video frames include
one or more depth maps.

9. The method of claim 1, where the incremental optimi-
zation is implemented using a genetic search algorithm.

10. The method of claim 1, where the incremental optimi-
zation is implemented using a sampling-based optimization.

11. A non-transitory computer-readable storage media
storing instructions, which when executed by a computer
system, perform operations for estimating a state-space con-
troller from a set of video frames, the operations comprising:

receiving the set of video frames, wherein the video frames

include two-dimensional (2D) images which depict a
motion of an entity;

initializing the state-space controller, wherein the state-

space controller includes states each corresponding to an

atomic controller and transitions between the states; and

incrementally optimizing parameters of the state-space

controller and changing a structure of the state-space

controller to approximate through simulation the motion

as depicted in an initial subset of the video frames and in

expanded subsets of the video frames,

wherein the parameters include at least one of represen-
tations of target poses for angular configurations of a
body and control and balance parameters,

wherein parameters of a last one or more states of the
state-space controller are optimized at each stage of
the incremental optimization, and

wherein changing the structure of the state-space con-
troller includes adding one or more additional states
and transitions between states to the state space con-
troller.

12. The computer-readable storage media of claim 11, the
operations further comprising, pre-processing the video
frames to extract one or more image features from each video
frame.

13. The computer-readable storage media of claim 12,
wherein the image features include at least one of foreground
silhouettes, edges, color, texture, and motion capture marker
locations.

14. The computer-readable storage media of claim 11, the
operations further comprising, re-optimizing the parameters
of'the state-space controller based on all of the video frames.
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15. The computer-readable storage media of claim 11, the
operations further comprising altering the structure of the
state-space controller for robustness and compactness by at
least one of adding cycles in the state-space controller,
enforcing constraints on the structure of the state-space con-
troller, adding a state transition type, and modifying a state
transition type.

16. The computer-readable storage media of claim 15,
wherein the incremental optimization minimizes an objective
function with respect to state-space controller structure and
parameters, initial pose, and initial velocity.

17. The computer-readable storage media of claim 11,
wherein the video frames include one or more depth maps.

18. The computer-readable storage media of claim 11,
where the incremental optimization is implemented using a
genetic search algorithm.

19. The computer-readable storage media of claim 11,
where the incremental optimization is implemented using a
sampling-based optimization.

20. A system, comprising:

a processor; and

a memory, wherein the memory includes an application

program configured to perform operations for estimat-
ing a state-space controller from a set of video frames,
the operations comprising:

10

15

20

20

receiving the set of video frames, wherein the video
frames include two-dimensional (2D) images which
depict a motion of an entity,

initializing the state-space controller, wherein the state-
space controller includes states each corresponding to
an atomic controller and transitions between the
states, and

incrementally optimizing parameters of the state-space
controller and changing a structure of the state-space
controller to approximate through simulation the
motion as depicted in an initial subset of the video
frames and in expanded subsets of the video frames;

wherein the parameters include at least one of represen-
tations of target poses for angular configurations of a
body and control and balance parameters;

wherein parameters of a last one or more states of the
state-space controller are optimized at each stage of
the incremental optimization; and

wherein changing the structure of the state-space con-
troller includes adding one or more additional states
and transitions between states to the state space con-
troller.



